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Abstract
Fuzzy systems have been popular in the field of

petrophysical properties prediction using well log data.
However, the establishment of the fuzzy rule set is a
difficult task. A self-generating fuzzy rules extraction
technique can be used to set up the fuzzy system. A set of
core data with known characteristics is first selected as
the training samples. Fuzzy rules are then extracted and
undergo a process of rule elimination. This extracted
fuzzy rule base will be used to predict properties at
other depths within or around the well. One problem
always encountered in this technique is missing rules
when used in prediction. This problem is caused by
fuzzy rule sets that do not cover the whole universe of
discourse, leaving gaps in-between the membership
functions. This problem has been solved here with the
modified α -cut based fuzzy interpolation technique. The
technique interpolates the membership function in the
gaps. This work will extend the applicability of fuzzy
systems in well log analysis.

1 Introduction

In petroleum well modelling, boreholes are drilled at
different locations around the region. Well logging
instruments are lowered into the borehole to collect data
at different depths known as well log data [1]. Beside
the well log data, samples from various depths are also
obtained and undergo extensive laboratory analysis.
These laboratory analysis data are known as core data in
the well log data analysis process.

Two key issues in reservoir evaluation using well log
data are the characterisation of formations, and the
prediction of petrophysical properties. Examples of
petrophysical properties are porosity, permeability and
volume of clay. While a core data set gives an accurate
picture of the petrophysical properties at specific
depths, it takes a lengthy process and incurs great
expense to obtain such data. Hence, only limited core
data are available at selected wells and depths.

In well log analysis, the objective is to establish an
accurate interpretation model for the prediction of

petrophysical characteristics for uncored depths and
boreholes around that region [2,3]. Such information
is essential to the determination of the economic
viability of a particular well or region to be explored.
Although empirical formulae relating well log data to
the petrophysical properties may be used, the unique
geophysical characteristics of each region prevent a
single formula from being applicable universally.
Instead, statistical techniques and graphical methods
are used extensively. To ensure validity of the model,
core data from particular wells undergo detailed
analysis and serve as referents. Parameters of the
model are then manipulated in order to match the
overall output to the core data. It is expected that this
would result in a better model and increase the
overall accuracy.

However, with the availability of increasing
number of instruments and log data, it becomes
difficult to apply the traditional statistical and
graphical methods. To overcome the problem,
alternative techniques such as Artificial Neural
Networks (ANN) have been applied. Results of these
works have been reported in the past few years. Most
of the ANN applications are based on the
Backpropagation Neural Networks (BPNN) [4,5,6]
which make use of core data as training samples.
Once the network is trained, it is used as a model to
predict subsequent inputs at different depths or
boreholes around that region. Although applications
of neural networks have been successful,
disadvantages such as long training times and the
need to select appropriate training parameters have
caused inconvenience in practical use. In addition,
once the network is trained, the model is seen as a
black box and the user has no access to any explicit
knowledge that the network has learnt.

This problem may be solved by another technique
that could express the function in human
understandable rules known as fuzzy systems. A
fuzzy set allows for the degree of membership of an
item in a set to be any real number between 0 and 1
[7]. This allows human observations, expressions and



expertise to be modelled more closely. Once the fuzzy
sets have been defined, it is possible to use them in
constructing rules for fuzzy expert systems and in
performing fuzzy inference. Fuzzy reasoning is
expressed as linguistic rules in the form “If x is A, then
y is B”, where x and y are fuzzy variables, and A and B
are fuzzy values. This form of description corresponds
well to the rules expressed by humans.

This approach is suitable to this application as the
model for each situation may vary greatly and it allows
the incorporation of intelligent and human knowledge to
deal with each individual case. However, the extraction
of fuzzy rules for this application could be very difficult
for analysts with little experience. This could be a major
drawback for use in well log data analysis.

Recently, an automatic self-generating fuzzy rules
inference system [8] had shown successful results in
establishing the well log interpretation model. The final
interpretation model will comprise of fuzzy rules that
the analyst can understand and modify. The user can
also add on their experience and knowledge into the
fuzzy rules base with ease. However, it suffers from one
problem. Depending on the nature of the boreholes,
when the extracted rule base is used to predict
petrophysical characteristics for uncored depths or
boreholes around that region, not all data can find a rule
to fire. This is mainly due to the gaps in between the
membership functions. In this case, depending on the
fuzzy inference program, this may give a very
inaccurate prediction. This paper has incorporated the
modified α -cut based fuzzy interpolation technique [15,
16] with the self-generating fuzzy rules inference
system to solve this problem.

2 Self-generating Fuzzy Rules Inference
System

The objective of the self-generating fuzzy rules
inference system [8] is to aid the user in setting up a
fuzzy rules interpretation model by mapping the
available core data to their corresponding memberships.
After this has been done, the user can examine the
interpretation model from the fuzzy rules. The user can
then modify and add-on to the rule base easily. The
steps involved in the self-generating fuzzy rules
inference system are summarise as follows:

(1) Normalise the data between 0 and 1 by using
linear or logarithmic transformations depending
on the nature of the well log data.

(2) Define the number of fuzzy regions and fuzzy
terms for all data. For ease of extraction, only
triangular types of membership functions are
used.

(3) The space associated with each fuzzy term over
the universe of discourse for each variable is then
calculated and divides them evenly.

(4) For each available core data, a fuzzy rule is
established by directly mapping the physical
value of the variable to the corresponding
fuzzy membership function.

(5) Go through Step (4) with all the available core
data and generate one rule for each input-
output core data pair.

(6) Eliminate repeated fuzzy rules.
(7) The set of remaining fuzzy rules together with

the centroid defuzzification algorithm now
forms the fuzzy interpretation model.

3 Problem of Self-generating Fuzzy
Rules Inference System

To realistically examine the problem of using the
self-generating fuzzy rules inference system, we have
to work on a real problem. Due to the confidentiality
of the data, no borehole details could be published
here. Well log data from two typical wells are used to
predict the petrophysical property, porosity (PHI).
Core data from one well are used to establish a
prediction model based on the self-generating fuzzy
rules inference system. The model is then used to
predict the porosity of the second well. The input logs
used in this case study are gamma ray (GR), deep
induction resistivity (ILD) and sonic travel time
(DT). All the variables are normalised between the
values of 0 and 1. The first well has a total of 71 core
data and is used to establish the fuzzy rules. The
second well has 51 core data and is used as the testing
well to test the prediction accuracy of the self-
generating fuzzy rules inference system.

A few membership functions (3,5,7,9) are tested,
and 9 membership functions appear to give the best
prediction results. This is understandable, as more
membership functions will cover the approximation
function better. Of course, the number of rules will
also increase with the increase in the size of the
membership function. The total number of rules
extracted from the training well is 63. The
membership distribution of the input and output are
shown in Figure 1.

The prediction accuracy for this case is calculated
using the correlation factor as follow:
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Figure 1: Membership functions for the extracted rules.

The correlation of the predicted training output and
the training core data is 0.917; and the predicted testing
output and the testing core data is 0.865. The output plot
of the predicted testing output (solid line on the plot) as
compared to the core data (dots on the plot) is shown in
Figure 2.

From the plot, the self-generating fuzzy rules
inference system seems to generate promising

predictions. However, when performing fuzzy
inference on the testing well, two instances of input
variables cannot find any rule to fire. They are shown
in Figure 3 and highlighted in the circle of Figure 2.
From Figure 1, we can also observe that there are
gaps in between the membership functions.

In this case study, the number of input sets that
cannot find any rule to fire is considered minimal.
However, in some cases, this may not always be true.
If more than half the input instances in the prediction
well cannot find any rule to fire, this interpretation
system may be considered useless. This is the major
drawback for the self-generating fuzzy rules
inference system to be used in petrophysical
properties prediction in most practical cases.

However, by observing Figure 1, if some form of
interpolation could be used to cover the gaps in
between the rule membership functions, then the self-
generating fuzzy rules inference system will continue
to be useful in the field of well log analysis. The rest
of the paper will examine the possibility of using the
modified α-cut fuzzy interpolation technique together
with this self-generating fuzzy rules inference system.

Warning: no rule is fired for input
[0.271000 0.367000 0.506000 ]!

Warning: no rule is fired for input
[0.360000 0.322000 0.599000 ]!
Figure 3: Warning message for input without rule to

fire.

Figure 2: Output plot of testing well.



4 Fuzzy Rule Interpolation

In the case when a rule base contains gaps or is a
sparse rule base, classical fuzzy reasoning methods can
no longer be used. This is the problem highlighted in
the previous section, as an observation finds no rule to
fire. Fuzzy rule interpolation techniques provide a tool
for specifying an output fuzzy set whenever at least one
of the input universes is sparse. Kóczy and Hirota [9]
introduced the first interpolation approach known as
(linear) KH interpolation.

Two conditions apply for the usage of the linear
interpolation. Firstly, there should exist an ordering on
the input and output universes. This allows us to
introduce a notion of distance between the fuzzy sets.
Secondly, the input sets (antecedents, consequents and
the observation) should be convex and normal fuzzy
(CNF) sets.

The method determines the conclusion by its α-cuts
in such a way that the ratio of distances among the
conclusion and the consequents should be identical with
the ones among observation and the antecedents for all
important α-cuts (breakpoint levels).

The KH interpolation possesses several advantageous
properties. Firstly, it behaves approximately linearly in
between the breakpoint levels. Secondly, its
computational complexity is low, as it is sufficient to
calculate the conclusion for the breakpoint level set.
Moreover, its extension is found to be a universal
approximator [10]. However, for some input situation it
fails to results in a directly interpretable fuzzy set,
because the slopes of the conclusion can collapse. This
is shown in Figure 4.

Figure 4: Problem of linear KH fuzzy interpolation.

Several approaches were proposed in the last decade
to alleviate this inconvenience [11, 12, 13, 14]. These
approaches either determine conditions with respect to
the input sets [11, 12] or implement conceptually
different method to avoid abnormal conclusion [13, 14].
The new concepts, however, do not preserve the low
computational complexity of the original KH method.

Recently, a modification of the original method has
been proposed which solves the problem of abnormal
conclusion while maintain its advantageous properties

[15, 16]. This is known as modified α-cut fuzzy
interpolation. This method is selected to incorporate
with the self-generating fuzzy rules inference system
used in well log analysis. This method works with the
vector description of fuzzy sets. The fuzzy set A is
represented by a vector ],...,,...,[ 0 nm aaaa −=  where

]),[( nmka k −∈  are the characteristic points of A and

0a is the reference point of A with membership
degree one. It means that ],...,[ 0aaa mL −= , and

],...,[ 0 nR aaa =  are the left flank and right flank of
A, respectively.

Coordinate transformation is used to avoid the
abnormality. The basic idea of the method is that it
transforms the space of the consequent sets to another
space, where any abnormality can be excluded. The
calculation of the conclusion is proceeded in the
transformed space, and finally, the resulting set is
transformed back to the original space.

The left and right flanks of the conclusion are
calculated separately, but their calculations are
similar. E.g., for the right flank, the coordinates of the
conclusion can be obtained as [15, 16]:
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coordinates of the 1A , 2A , and *A .

kkkkk
KH bbb 21

* )1( λλ +−=

is the value of the k th coordinate calculated by the α-
cut based original KH approach. If only triangular
membership functions are used, due to the formula
(2) and (3), the left and right flanks of the conclusion
are connected at the reference point, *

0b .
With the above interpolation characteristics of the

modified α-cut based fuzzy interpolation technique,
any input variables which fall into the gaps in
between the membership can provide some form of



interpolated results. This will not only ensure that all
input variables can generate reasonable output
prediction, it could also ensure that the usage of the
self-generating fuzzy rules inference system in the field
of well log analysis is practical.

5 Conclusion

In this paper, the practical applicability of the self-
generating fuzzy rules inference system in well log
analysis has been tested. Based on the real world case
presented in this paper, a very undesirable disadvantage
of the technique has been discovered. The problem of
sparse rule base generated from the core and well logs
data causes some undesirable predictions in the uncored
depths or borehole around the region. This is mainly
due to input instances that could not find any rule to
generate reasonable predictions. This is especially
important in well log analysis as the nature of boreholes
could be very complex.

To solve this problem, the characteristic of the
modified α-cut fuzzy interpolation methods has been
examined. This method can be used to interpolate the
gaps in-between the rules. This ensures that the set of
sparse fuzzy rules generated by the self-generating
fuzzy rules inference system is more practical to be
used in well log data analysis. We intend to examine the
results of this technique in another paper. This is useful
in the field of petrophysics as it provides another
alternative for petrophysical properties prediction that
allows more human control.
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